Working with arrays in PySpark allows you to handle collections of values within a Dataframe column. PySpark provides various functions to manipulate and extract information from array columns. Here’s an overview of how to work with arrays in PySpark:

Creating Arrays:

You can create an array column using the array() function or by directly specifying an array literal.

from pyspark.sql.functions import array

# Create an array column using array() function
df = df.withColumn("fruits", array("apple", "banana", "orange"))

# Create an array column using array literal
df = df.withColumn("fruits", ["apple", "banana", "orange"])

These examples create an “fruits” column containing an array of fruit names.

Accessing Array Elements:

PySpark provides several functions to access and manipulate array elements, such as getItem(), explode(), and posexplode().

from pyspark.sql.functions import col, explode

# Get the first element of the array column

# Explode the array column to create a new row for each element"fruit")).show()

# Explode the array column and include the position of each element
df.selectExpr("posexplode(fruits) as (pos, fruit)").show()

These examples demonstrate accessing the first element of the “fruits” array, exploding the array to create a new row for each element, and exploding the array with the position of each element.

Filtering and transforming arrays:

PySpark provides functions like array_contains(), array_distinct(), array_remove(), and transform() to filter and transform array elements.

from pyspark.sql.functions import array_contains, array_distinct, array_remove, transform

# Filter rows where the array contains a specific value
df.filter(array_contains(df.fruits, "banana")).show()

# Get distinct elements from the array"unique_fruits")).show()

# Remove specific elements from the array, "banana").alias("new_fruits")).show()

# Transform each element of the array using a lambda function, lambda x: x + "_suffix").alias("modified_fruits")).show()

These examples demonstrate filtering rows based on array values, getting distinct elements from the array, removing specific elements, and transforming each element using a lambda function.

Aggregating Arrays:

PySpark provides functions like array_union(), array_intersect(), and array_sort() for aggregating arrays.

from pyspark.sql.functions import array_union, array_intersect, array_sort

# Union two array columns, df.fruits2).alias("combined_fruits")).show()

# Get the intersection of two array columns, df.fruits2).alias("common_fruits")).show()

# Sort the elements in the array column"sorted_fruits")).show()

These examples demonstrate performing array union, intersection, and sorting operations on array columns.